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A b s t r a c t :  The  a s y m p t o t i c  equivalence ,  for v a n i s h i n g  coupl ing ,  be tween  a x i o m a t i c  and  g h o s t  
p r o p a g a t o r s  is inves t iga ted .  The  phys ica l  imp l i ca t ions  of such  an  equ iva lence  for t he  s ingu la r  
s t r u c t u r e  of a field t h e o r y  a n d  for the  h igh  ene rgy  proper t i es  of  field p r o p a g a t o r s  a re  discussed.  

1. I n t r o d u c t i o n  

This paper is to be considered as a direct continuation of a preceding 
one x) it* in which the implications of a singular behaviour of quantum field 
theories at zero coupling were discussed. 

In this note we shall show under which conditions a non-axiomatic propaga- 
tor with a ghost pole ('ghost propagator') coincides asymptotically for vanishing 
coupling with any one of a class of axiomatically correct propagators. 

The motivation for this analysis lies in the fact, recently pointed out by  
several authors i-3), that  the subtraction of the ghost pole from the totally 
i terated bubble approximation to meson and photon propagators leads to an 
axiomatically correct approximate propagator having the same power series 
expansion as the ghost propagator. 

We discuss simultaneously both the case in which the ghost propagator 
arises from an approximation made to an axiomatically correct one and the 
case in which already the exact one turns out to present a ghost pole. 

The implications of the asymptotic equivalence for the singular structure 
of the theory and the high energy behaviour of the propagators will also be 
discussed. 

The physical ideas underlying the present work have been discussed in (I). 
The following notation will be used: k 2 =  k2--k4 2 is to be considered a 

complex variable and the physical propagators ? self-energies etc. are defined 
in the usual way as boundary values of the corresponding functions of k 2 
(i.e. for a real k ~ the substitution k 2 --~ k 2 - - i e  should be made). 

* P resen t  address :  M a x - P l a n c k - I n s t i t u t  f /Jr  P h y s i k  und  As t rophys ik ,  Miinchen,  G e r m a n y .  
t* W o r k  done unde r  the  auspices  of the  Brazi l ian  Na t i ona l  Resea r ch  Council  and  t he  In t e rna t i o -  

na l  A tomic  E n e r g y  Agency.  
t t t  Ref.  1) is he rea f te r  referred to as (I). 
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2. Asymptotic Requirement 

In this section, we determine the class of axiomatic boson propagators 
which have a given ghost propagator as an asymptotic representation for 
vanishing coupling (g* --> +0) .  

Let the renormalized ghost propagator of the boson be 

= k * ) ) l ,  (1) 

where F(g 2, k 2) is analytic in the complex k 2 plane cut from --oo to - -a  2. 
Here, a ~ ~ m 2, m being the renormalized boson mass, and F(g * , -k~+i*)  = F* 
(ga,--k~--is) for g~ > 0. The function F has no singularities along the cut and its 
Cauchy integral around the branch point a 2 tends to zero with vanishing 
radius. Since the propagator should tend to a free one as the coupling constant 
tends to zero and m is the renormalized mass, we require that  F(O, k 2) = 0 and 
F (g ~, - m  2 ) = 0 .  

Let us assume that  F(g*, k 2) is an analytic function of g2 in a certain domain 
(independent of k*)around zero. 

The presence of a ghost pole k0* in (1) implies 1- -F(g  2, k0 2) = 0 with ko 2 
real for g* > 0 and k0 ~ > --m*. We consider the case of only one ghost state 
and consequently restrict ourselves to simple zeros of the above equation. 

Suppose that  A' F --> 0 faster than l /k ~ as ka-+ oo; this hypothesis might 
be weakened to A' F -+ 0 as k 2 --> oo, without altering the majori ty of our results. 
The above hypotheses are suggested by  the results of perturbation theory; 
they are satisfied by  a finite-order renormalized approximation to F in eq. (1). 

The requirement of asymptotic equivalence between the axiomatic propagator 
d ' r  and the ghost propagator A'F implies of course that  their difference, denoted 
by  R (g*, k*), has zero asymptotic expansion. The axiomatic propagator 

d'F = A '~+ R(ga, k 2) (2) 

satisfies the Lehmann 4) representation * 

= 1/(k* + m*) + du*K(g*, u,)/(k2 + u2), (a) 

w i t h K ( g  2,u 2 ) ~ 0  for g 2 > 0 .  
From eqs. (1)-(3) it follows that (1) R(g 2, k 2) is analytic in the cut k 2 plane 

and has a pole at ko 2, and (2) R(g*, k*) --+ 0 as k 2 -+ 00. 
Therefore, a straightforward application of Cauchy's theorem yields 

R(g2, k*) --  C f f  
-Pl ( g a, u 2 ) 

k~--ko 2 + ~ du* (4) (k2+u2) ' 

* The main  results  of the p resen t  paper  remain valid if subt rac t ions  are included into the 
axiomatic  representat ion.  
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where C is minus the residue of A'F at  k0 ~ and P1 is a provisionally a rb i t ra ry  
function,  bu t  such tha t  the integral  on the r ight-hand side of eq. (4) exists. 

One now easily obtains from eqs. (1)-(4) 

K (g s, u s) 
I m F ( g  s, --uS--ie) 

u(m 2 - u  s) [(1 - R e F ( g  2, - u S - i e ) ) ~ +  ( I m F  (g s, - u  s - ie))s] + p,(gs, .s). (5) 

Since K is real, so also mus t  be P1. 
F rom (2), mul t ip ly ing  both  sides by  k s and taking the l imit  kS--> oo, one 

finds wi th  (4) tha t  

C = 1 + foo~, duS{K(g2, u2)--P~(g *, uS)} • 

Hence, C is real. 

(6) 

From the imaginary  par t  of (4), for k s = --uS--ie,  one finds 

I m R ( g  s, --uS--ie) = Pl  (g s, u"). (7) 

Consequently,  P1 must  have zero asymptot ic  expansion in the coupling 
constant .  

F rom (5) and  (7) it  follows tha t  I m F ( g  s, --uS--is) <= 0 for any  given u 2 
and  sufficiently small gS > 0, since K _>_ 0 and P~ vanishes faster than  any  
power of g2. This imposes an addit ional  restriction on the function F.  

The requirement  tha t  K must  be a regular funct ion of gS, or equivalently,  
t ha t  the discontinuit ies of A'F and  AT' F coincide across the cut, implies P1 ------ 0. 
This can be t rue only if I m F ( g  s, --u2--ie) <= 0 for g2 > 0. The propagator  zI' F 
so obtained (with P1 ~ 0) coincides with the one proposed by  Redmond  ") 
and  Bogolyubov et M,. 3). 

3. B e h a v i o u r  of the  G h o s t  Po le  

We now discuss the addi t ional  restrictions on the funct ion F arising from the 
requirement  of asympto t ic  equivalence. 

Since generally the asymptot ic  vanishing of P1 ensures the same behaviour  
for its Stieltjes t ransform in (4), it will follow that ,  if no fur ther  specifications 
about  P1 are made, the te rm C (g2)/(k2 ko 2 (g2)) in (4) must  also be asymptot ic-  
al ly zero. This implies tha t  for g2 ~ + 0  either C(g 2) --~ 0 faster than  any  power 
of gS, or tha t  koS(gS ) ~ oo faster  than  any  inverse power of g2, or both. We shall 
see below tha t  under  our init ial  assumptions we must  have k02(g2 ) ~ oo 
faster  than  any  inverse power of gS. 

For  the sake of simplici ty we put  P1 ~ 0 in what  follows. 
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To obtain a spectral representation for F we observe that  from 

1 1 f °  K(gL  u s) C 
( k 2 + m ~ ) ( l _ F ( g S ,  kS)) - -  k S + m  s + __* du 9 k,+u~, k~--ko 2 (8) 

and eq. (6) we have 

1 oo K(g*' uS)(m2--uS) koS+ms duSK(g s, uS)+ l  (9) 
1-- F (gS, k s) --  2 dus k s + u s kS_ko  s , " 

Therefore, from well known properties of the Stieltjes transform, it follows 
that for gZ > 0 

lim F(g ~, kS)Ilk s] ~ 0 and finite (10a) 
i:t~oo 

if fa%duSK(g s, uS)(u2--m s) is finite, or 

lira F(gL k*)/k s = 0 (10b) 
[k'l~oo 

if ~o~ duSK(g2, u 2) ( u S m  s) is infinite. 

In any case Cauchy's theorem can be applied to F(g s, kS)/(kS+mS) 2, the 
infinite circle giving zero contribution. Recalling that  F(g s, - -m s) = 0, one 
finds 

F(g*, k ~) • A (g2)(k* +m2)  + f~T duS P(g s, u*)/(kS+ug)} (kS+mS) s, (11) 

what also can be-wri t ten as 

/'(gS, I#)= B ( g ~ ) ( l # - } - m s ) - }  - {f27 dusP'(gS, u')/(l#-l-uS)} (l#--}-mS). (12) 

Although calculated for g2 > 0 such a representation would hold for any 
gS inside the analyticity domain of F as a function of gS, by  continuation in g~ 
under the integral sign. For definiteness we shall restrict ourselves to such 
functions F for which this continuation coincides with the analytic continuation 
of F itself ?; in this case F would increase not faster than k s for all g* in the 
analyticity domain. For what follows however, it would have been sufficient 
to consider functions F which do not increase faster than a certain power 
of k s, for all g~ in the analyticity domain. 

For g~ > 0, one has P '  ~ 0 in virtue of ImF(g s, --uS--is)<= O, a n d ~ d u s P  
(g2, u ,) is finite because of the rate of increase of F.  

* This  will be the  case if for in s t ance  F (g2, k2) ~ limn_.oo F ' .  (g2,/#) for all  g~ in t he  ana ly t i c i t y  
domain ,  where  F',,(g ~, k ~) has  a cu t  e x t e n d i n g  f rom - - a  ' to  - - ~ a  2. As a s imple  coun t e r example  of a 
func t ion  sa t i s fy ing  all our  r equ i r emen t s  and  whose  c o n t i n u a t i o n  c a n n o t  be def ined b y  (12) we h a v e  

F (g*, k2 ) ~ g* Eexp { "t t -- g" ln a ~  t / ~ l + a ' ~ - l ]  

for Re gi < 1, I t s  c o n t i n u a t i o n  up  to IRe g* > - -1  can  be def ined b y  (11). 
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If  case (10b) holds, one has B ~ 0, i.e. 

F(g', k')= { f:7 (k2 +m'), (13) 

which is the form expected  from per turba t ion  theory.  In this case f ~ d u 2 p  ' 
(g2, u ~) is infinite since A' F -+ 0 faster  than  l[]k ml as k 2 -+ co. 

We show now tha t  if ko2(g 2) does not  t end  to inf ini ty  faster  than  any  inverse 
power  of g*, then C(g ~) cannot  go to zero faster  than  any  power  of g* as g* -+ + 0 ,  
wha t  would  imply  tha t  R (g2, k 2) could not  be asympto t i ca l ly  zero, con t ra ry  to 
our hypothesis .  

B y  the definition of C we have 

C = 1/(ko 2 + m2){OF(g 2, ko2)/Oko 2} 

= -- (dkoZ/dg2)/(ko 2 -+ m2){OF(g ~, ko2)/Og2}. (14) 

Therefore,  if C would  tend to zero faster  than any  power  wi thout  ko2 tending 
to infini ty faster  than  any  inverse power, then OF/Og 2 had  to increase faster  
than  any  inverse power.  This will be proved to be impossible. 

In any  case, we know a l ready tha t  ko2--> co as g2__> + 0 ,  in vi r tue  of 
F ( 0 ,  = o. 

We can write,  using the fact  tha t  F is analyt ic  in g~, 

1 
OF(g ~, ko2)/Og z = - -  f F(z,  ko2)/(z--gZ)2dz. (15) 

2z~ i 
Thus,  we get 

1 
]aF(g 2, ko2)/Og2[ < ~ ~ ]dzF(z, ko2)/(z--g2)]. (16) 

For  g2 in a sufficiently small v ic ini ty  of g2 = 0, we m a y  use as pa th  of integrat ion 
the circle wi th  radius r with  centre at  the origin. Therefore,  considering g2 
which lie in a v ic ini ty  of radius ½r of the origin, we find 

IOF(g 2, k2)/Og2l < (2 /~r ) f : "  dOIF(z, ko2)l. (17) 

F rom (12) we know that  

lim IF(z, k2)l/Ikml 
ik21~oo 

is finite. 
Hence,  we have 

lim IOF(g2' k°2)/0g2l _< lim 
g 2 ~ + o  k o  2 - -  ko~_~ o ° 

gt 

(2/~r) dOIF(z, ko2)lllko2L) < co. (18) 

F rom this it follows that  for the asympto t ic  equivalence to hold we must  have 

lira ko2(g2)g 28 = oo for any  s > 0. (19) 
g 2 - + + 0  
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In case F(gS, k s) results from a finite order perturbation approximation to 
the self-energy, i.e. F(g 2, k s) = ~N= 1 g~'nFn(k2 ), the following conclusion may  
be easily drawn from (19): limk~oo F~(k2)/k s~ = 0 for all n and any s > 0, and 
consequently B(g z) ~ 0 in (12). 

Of course the same result holds if F(g 2, k s) ~ - ~ = 1  gS~F~(kS), with Fn 
(k 2) >__ 0 for all n larger than a certain n o and k 2 larger than a fixed value. 

From the preceding considerations we see that  the requirement of asymptotic 
equivalence imposes a rather stringent condition upon the behaviour of F,  
i.e. upon the location of the ghost pole as a function of the coupling constant. 

4. Physical Consequences of the Asymptotic Equivalence 

We finally discuss the implications of the asymptotic equivalence by  means 
of two examples: 

1) the iterated bubble approximation, where F(g s, k s) --~g2F 1 (kS), and 2) 
taking for F the more particular from F(g s, k s) = g2Fl(kS#(gs)), which is 
chosen by  analogy with the result of Gell-Mann and Low's 5) analysis of the 
high-energy behaviour of propagators in quantum electrodynamics. The first 
case is obviously included in this one b y  taking # ~ 1. 

From 
g2F~(k2q~(gS)) = 1, (20) 

one obtains 

(1/g2)+{d(koS#(gS))/dgZ#(g2))E3{g2F~(koS#(gS)))/~koSJ = O, (21) 

and from (14) and (21) it follows that 

C = --gS(d(koSq~(gS))/dg~}(ko2+mS)qb(g*). (22) 

Since for g~ -+ +0 ,  k02 -+ oo faster than any inverse power, and ~b(g2) is a 
regular function in the vicinity of g2 :_ 0, one finds 

lim C(g 2) = oo. (23) 
g2--++ 0 

This is in no contradiction with the asymptotic requirement since ko z goes 
to infinity sufficiently fast to render R (g2, k 2) asymptotically zero. 

Let us take C(g s) ~ rA'/g 2r, with A'  > 0, r > 0, for gS ~ 0. Then, by  
integration of (22) we obtain, putting (koS+mS)/ko s ~ 1 for gS m 0, the result 

ko*(gS)#(g s) ~ B'  exp (A'/g ~') for gS ~ 0. (24) 

From this it follows that 

F~(kSO(g*)) ~ (A')-I/" [log (kSO(gS)/B')]l/~ for k s -+ oo. (25) 

One could of course take C more singular than any inverse power of g*, 
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corresponding to a lower increase of F for large k*, e.g. Fl(k*q~(g2)) ~ loglog 
(k2q~(g2)), etc. 

In case m ---- 0, the funct ion  F1 can easily be expressed as a funct ion of C 
according to 

Fl(kZq~(g2)) ---- G[log (k2qb(ge)/b)l, (26) 

where G-~[x] = f~dtC(1/t) / t  and  b is an in tegra t ion  constant .  The  funct ion F~ 
satisfies the relat ions 

lim (log F~(y))/log y = 0, lira F l ( y  ) ---- oo, (27) 
I t - - -~  OO It----> OO 

implying t ha t  lim,__,o o F l(y)/ys _ 0 for any  s > 0. 
F r o m  (6), wi th  P1 --= 0, we see t ha t  C = Zz -1 where Z z (to be called s imply  Z) 

is the renormal iza t ion  constant .  Using now the relat ion g * =  Z-~go 2, valid 
in q u a n t u m  elect rodynamics ,  one can discuss the general  behaviour  of the 
unrenormal ized  coupling cons tan t  as a funct ion of the  renormal ized  one. 

F r o m  (23) it  is seen tha t  the  ' ax iomat ized '  t h eo ry  will be singular  at  zero 
coupling: Z - l ( g  2 -+ + 0 )  = 00. 

For  r < 1, go ~ tends  to  zero wi th  g2, while for r > 1, go 2 goes to inf in i ty  as g2 
tends  to zero and,  as Z "-~ => 1, the la t te r  curve  go2(g 2) mus t  necessari ly have  
a min imum at  some finite gM ~ > O. 

For  r ---- 1, go 2 goes to the cons tan t  A '  as g~ tends  to zero. In  the case of the 
i t e ra ted  bubble  approx imat ion  of q u a n t u m  e lec t rodynamics  and meson theory  
as well as in the Lee Model, one finds tha t  r ---- 1, and  calculat ion shows tha t  
go 2 increases with increasing g2, and  go 2 --> A'  as g2 _+ + 0 in an a sympto t i c  way,  
t ha t  is, d~goe/dg ~ ---> 0 for g2 __> + 0  and  n ~ 1. If  with increasing g2, go 2 would 
s ta r t  to decrease, the curve go~(g ~) would have  to pass th rough  a m in im u m  at 
some gM ~ < A ' ,  as can be seen f rom Z -1 ~ 1. 

The behav iour  of go2(g 2) for large ge was a l ready s tudied  in (I). 

5. Conc lus ions  

(a) The physical  implicat ions of a field theory  with singular s t ruc ture  at  
zero coupling were discussed in detai l  in (I). In  part icular ,  the  relat ion between 
bare  and dressed particles was shown to differ f rom the usual ly  accepted  one. 

(b) The possibil i ty of obtaining finite relat ions between g and  go supports  the 
hope tha t  the theory  might  lead to definite numerical  values such as observed 
charge or mass-charge rat ios if supplemented  with some addi t ional  conditions. 

(c) If  one assumes tha t  in quan tum-e lec t rodynamics  the exact  p ropaga tor  
has  a ghost  pole and coincides asympto t ica l ly  with an axiomat ic  one, then  one 
of the results of Gell-Mann and Low's analysis, namely  the fact tha t  go can be a 
finite non-zero cons tan t  independent  of g could be weakened to imply  tha t  go 
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tends asymptotically to a constant as g tends to zero, corresponding to the 
case r = 1. Since this is also the case for the iterated bubble approximation, 
one would conclude that this approximation suffices to describe the essential 
qualitative features of the exact propagator for small g, even in the high 
energy region. 
(d) From (10) one can draw the following conclusion: if perturbation theory 
leads to results of the type (13) and not of the general type (12), the integral 
S~du~(u~--m~)K(g 2, u 2) must be infinite. Since this integral is connected with 
boson mass renormalization one concludes that  the boson self-mass in the 
modified theory will diverge. This conclusion, however, is not necessarily valid 
for the fermion self-mass since in that  case the lower degree of divergency in 
perturbation theory will reflect itself also in the modified ghost-subtracted, 
and therefore axiomatic theory. 
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