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Abstract: The asymptotic equivalence, for vanishing coupling, between axiomatic and ghost
propagators is investigated. The physical implications of such an equivalence for the singular
structure of a field theory and for the high energy properties of field propagators are discussed.

1. Introduction

This paper is to be considered as a direct continuation of a preceding
onel) 11t in which the implications of a singular behaviour of quantum field
theories at zero coupling were discussed.

In this note we shall show under which conditions a non-axiomatic propaga-
tor with a ghost pole (‘ghost propagator’) coincides asymptotically for vanishing
coupling with any one of a class of axiomatically correct propagators.

The motivation for this analysis lies in the fact, recently pointed out by
several authors1-3), that the subtraction of the ghost pole from the totally
iterated bubble approximation to meson and photon propagators leads to an
axiomatically correct approximate propagator having the same power series
expansion as the ghost propagator.

We discuss simultaneously both the case in which the ghost propagator
arises from an approximation made to an axiomatically correct one and the
case in which already the exact one turns out to present a ghost pole.

The implications of the asymptotic equivalence for the singular structure
of the theory and the high energy behaviour of the propagators will also be
discussed.

The physical ideas underlying the present work have been discussed in (I).

The following notation will be used: A% = k2—#,2% is to be considered a
complex variable and the physical propagators, self-energies etc. are defined
in the usual way as boundary values of the éorresponding functions of &2
(i.e. for a real k2 the substitution k2 — k2—ie should be made).

t Present address: Max-Planck-Institut fiir Physik und Astrophysik, Miinchen, Germany.

tt Work done under the auspices of the Brazilian National Research Council and the Internatio-

nal Atomic Energy Agency.
ttt Ref. 1) is hereafter referred to as (I).
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2. Asymptotic Requirement

In this section, we determine the class of axiomatic boson propagators
which have a given ghost propagator as an asymptotic representation for
vanishing coupling (g2 — +0).

Let the renormalized ghost propagator of the boson be

A’y = 1[(R*+m?)(1—F (g%, #%))], (1)

where F(g?, k%) is analytic in the complex k2 plane cut from — o0 to —a?.
Here, a? = m?, m being the renormalized boson mass, and F(g?, —k21-ie) = F*
(g% —Fk*—1¢) for g2 > 0. The function F has no singularities along the cut and its
Cauchy integral around the branch point a2 tends to zero with vanishing
radius. Since the propagator should tend to a free one as the coupling constant
tends to zero and s is the renormalized mass, we require that F(0, 22) = 0 and
F(g? —m?) = 0.

Let us assume that F(g?, k%) is an analytic function of g2 in a certain domain
(independent of %2) around zero.

The presence of a ghost pole kg% in (1) implies 1—F (g2, k%) = 0 with &2
real for g2 > 0 and %2 > —m?. We consider the case of only one ghost state
and consequently restrict ourselves to simple zeros of the above equation.

Suppose that A’y — 0 faster than 1/k2? as &% — co; this hypothesis might
be weakened to 4’z — 0 as k% — co, without altering the majority of our results.
The above hypotheses are suggested by the resuits of perturbation theory;
they are satisfied by a finite-order renormalized approximation to F in eq. (1).

The requirement of asymptotic equivalence between the axiomatic propagator
A’ and the ghost propagator 4’ implies of course that their difference, denoted
by R(g?, %?%), has zero asymptotic expansion. The axiomatic propagator

A'p = Ap+R(g% 1Y) (2)

satisfies the Lehmann 4) representation t

Ae =1 (R +m2) + [T durK (2, u7)] (B + w2), (3)

with K (g2 u?) = 0 for g2 > 0.

From eqs. (1)-(3) it follows that (1) R(g? %2) is analytic in the cut 2% plane
and has a pole at k42, and (2) R(g? &2) — 0 as k%2 — co.

Therefore, a straightforward application of Cauchy’s theorem yields

P g u?)
1
+f ) (4)

t The main results of the present paper remain valid if subtractions are included into the
axiomatic representation.

R(g? k%) =

k2
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where C is minus the residue of A’; at %2 and P, is a provisionally arbitrary
function, but such that the integral on the right-hand side of eq. (4) exists.
One now easily obtains from eqgs. (1)-(4)

K(g* u?)
. ImF (g2, —u?—ie) L P(gt ). (5)
~ n(mt =) [(1=ReF (g% —wi—ie))o + (ImF (g%, —w—ie))] |~ 16" ")

Since K is real, so also must be P,.
From (2), multiplying both sides by %% and taking the limit 42 — oo, one
finds with (4) that

C =1+ [ du{K (g u)— Py (g%, u2)}. (6)
Hence, C is real.
From the imaginary part of (4), for £2 = —u2—d¢, one finds
ImR (g%, —u?—ie) = P,(g? u?). (7

Consequently, P, must have zero asymptotic expansion in the coupling
constant.

From (5) and (7) it follows that ImF (g2, —u2—ie) < 0 for any given u?
and sufficiently small g2 > 0, since K = 0 and P, vanishes faster than any
power of g2. This imposes an additional restriction on the function F.

The requirement that K must be a regular function of g2, or equivalently,
that the discontinuities of A’ and A’; coincide across the cut, implies P, = 0.
This can be true only if ImF (g2, —u2—1e) < 0 for g2 > 0. The propagator 4’
so obtained (with P, = 9) coincides with the one proposed by Redmond 2)
and Bogolyubov et al. 3).

3. Behaviour of the Ghost Pole

We now discuss the additional restrictions on the function F arising from the
requirement of asymptotic equivalence.

Since generally the asymptotic vanishing of P, ensures the same behaviour
for its Stieltjes transform in (4), it will follow that, if no further specifications
about P, are made, the term C(g?)/(k*—£,2(g?)) in (4) must also be asymptotic-
ally zero. This implies that for g2 — 40 either C(g2) — 0 faster than any power
of g2, or that 2,%(g?) — oo faster than any inverse power of g2, or both. We shall
see below that under our initial assumptions we must have £y2?(g?) — oo
faster than any inverse power of g2.

For the sake of simplicity we put P, = 0 in what follows.
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To obtain a spectral representation for F we observe that from
1 K(g?, u? C
(R24+m?)(1—F (g2 k%))  R24-m? a? k24 u? k2 —Fkg?

and eq. (6) we have

J‘ dog? K (g?, u?) (m*—u?) kz—{—mz{
1—F(g, k?) B2 4 u

Therefore, from well known properties of the Stieltjes transform, it follows
that for g2 > 0

[} awrcigs, w1}, )

lim F(g? k%)/|k?| # 0 and finite (10a)
(K2 ~00
if [% dutK (g%, u?) (u>—m?) is finite, or
lim F(g? %)/k% = 0 (10b)
|k2|—>00

if f:; du?K (g2, u?) (u2—m?) is infinite.

In any case Cauchy’s theorem can be applied to F(g? %2)/(k%2+m?)?, the
infinite circle giving zero contribution. Recalling that F(g?, —m?) = 0, one
finds

F(gt #) = A (1) (B +m2) + [ ] auw* (g )| (k2+u2)| (h2+m2)2, (11)
what also can be-written as
F(g% #) = B(g) (R+m?) + | [ 7 auw P’ (g%, )| (k2 +200)) (h2-m2). (12)

Although calculated for g% > 0 such a representation would hold for any
g? inside the analyticity domain of F as a function of g2, by continuation in g2
under the integral sign. For definiteness we shall restrict ourselves to such
functions F for which this continuation coincides with the analytic continuation
of F itself t; in this case F would increase not faster than 42 for all g2 in the
analyticity domain. For what follows however, it would have been sufficient
to consider functions F which do not increase faster than a certain power
of %2, for all g2 in the analyticity domain.

For g2 > 0, one has P’ = 0 in virtue of ImF (g2, —u2—1¢) <0, and [Hdu?P
(g2, u?) is finite because of the rate of increase of F.

t This will be the case if for instance F (g2, k%) = limy,_, o0 F’, (g2, k2) for all g* in the analyticity

domain, where F’, (g2, k?) has a cut extending from —a® to —na?. As a simple counterexample of a
function satisfying all our requirements and whose continuation cannot be defined by (12) we have

Fgh#?) = g [exp { (L—g?) ln;i:j——mi:} _1]

for Re g% < 1. Its continuation up to Re g2 > —1 can be defined by (11).
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If case (10b) holds, one has B == 0, i.e.
Fge k) = [ auwr P (g, u2)| (B2 + u2)) (B2 +m2), (13)

which is the form expected from perturbation theory. In this case [3du2 P’
(g2, 4?) is infinite since 4’; — 0 faster than 1/|#?%| as 2% — co.

We show now that if 2,2(g2) does not tend to infinity faster than any inverse
power of g2, then C(g2?) cannot go to zero faster than any power of g%as g* — 40,
what would imply that R (g2 %) could not be asymptotically zero, contrary to
our hypothesis.

By the definition of C we have

C = 1/(k®+m?){OF (g, kq?)[0k%}
= — (dko?/dg?)/(ke* + m*){0F (g* kq®)[0g%} (14)

Therefore, if C would tend to zero faster than any power without %,2 tending
to infinity faster than any inverse power, then dF/0g? had to increase faster
than any inverse power. This will be proved to be impossible.

In any case, we know already that %£,2 > o0 as g% —» 40, in virtue of
F(0,%*) = 0.

We can write, using the fact that F is analytic in g2,

1
OF (% k)05 = —— § Fla, b/ (—g?)d. (15)
Thus, we get
OF (g8, k)j2g?] = o § 107 e, ko)l (6—g)]. (16)

For g?in a sufficiently small vicinity of g2 = 0, we may use as path of integration
the circle with radius » with centre at the origin. Therefore, considering g2
which lie in a vicinity of radius 27 of the origin, we find

|0F (%, #2)/0g2| < (2f) [27 dOIF (2, Re?)]. (17)
From (12) we know that
lim [F(z, £%)|/|#?
is finite. e
Hence, we have

OF (g2, k.2)/0g? ' 27
lim 10T (8% R0 _ (z/m)f 01 F (2, B2)|/|B2) < 0. (18)
0

g2—>+40 k02 kol 00

From this it follows that for the asymptotic equivalence to hold we must have

lim ky2(g?)g% = oo for any s> 0. (19)

9*—>+0
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In case F(g?, k?) results from a finite order perturbation approximation to
the self-energy, i.e. F(g? k%) = S~ g*" F,(k?), the following conclusion may
be easily drawn from (19): lim,s ,  F,(#%)/k%* = 0 for all # and any s > 0, and
consequently B(g%) = 0 in (12).

Of course the same result holds if F(g? k%) = >3 g**F,(k?), with F,
(k%) = 0 for all »# larger than a certain », and %2 larger than a fixed value.

From the preceding considerations we see that the requirement of asymptotic
equivalence imposes a rather stringent condition upon the behaviour of F,
i.e. upon the location of the ghost pole as a function of the coupling constant.

4. Physical Consequences of the Asymptotic Equivalence

We finally discuss the implications of the asymptotic equivalence by means
of two examples:

1) the iterated bubble approximation, where F(g?, #2) =g2F, (%%), and 2)
taking for F the more particular from F(g? k%) = g*F,(k*®(g?)), which is
chosen by analogy with the result of Gell-Mann and Low’s %) analysis of the
high-energy behaviour of propagators in quantum electrodynamics. The first
case is obviously included in this one by taking @ = 1.

From

g F,(F*9(g%) = 1, (20)
one obtains

(1/g%) +{d(k*D (%) /dg*®(g?)} [0{g*F 1 (ko* P (g?))} [0ky*) = 0, (21)
and from (14) and (21) it follows that
C = —g*{d(k*P(e%) | dg? (ke*+-m?)D(g?). (22)

Since for g% — +0, k2 > oo faster than any inverse power, and @(g?) is a
regular function in the vicinity of g2 = 0, one finds

lim C(g?) = 0. (23)

?—>+0

This is in no contradiction with the asymptotic requirement since k4% goes
to infinity sufficiently fast to render R{(g?, k%) asymptotically zero.

Let us take C(g?) ~ 7A'[g*, with A" > 0, r > 0, for g2 ~ 0. Then, by
integration of (22) we obtain, putting (£ 2-+m?)/ks% ~ 1 for g2 ~ 0, the result

ko?(g*)P(g%) ~ B'exp (A'[g¥)  for g2 ~ 0. (24)
From this it follows that
Fl(k2¢(g2)) ~ (A")7U" [log (k2@ (g?)[B')]Y/" for k* — o0. (25)

One could of course take C more singular than any inverse power of g%
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corresponding to a lower increase of F for large %2, e.g. F,(k*®(g?)) ~ loglog
(R*D(g?)), etc.

In case m = 0, the function F, can easily be expressed as a function of C
according to

Fy(R*®(g%) = G[log (k2@ (g%)/0)], (26)

where G1[z] = [{dtC(1/¢)[t and b is an integration constant. The function F,
satisfies the relations

lim (log Fy(y))flogy = 0,  lim F(y) = oo, (27)
v—> 00 V—>0
implying that lim,_, ., F;(y)/y* = O for any s > 0.

From (6), with P, =0, we see that C = Z;~! where Z, (to be called simply Z)
is the renormalization constant. Using now the relation g2 = Z-1g.2, valid
in quantum electrodynamics, one can discuss the general behaviour of the
unrenormalized coupling constant as a function of the renormalized one.

From (23) it is seen that the ‘axiomatized’ theory will be singular at zero
coupling: Z-1(g? - 4+0) = oo.

For r << 1, g,? tends to zero with g2, while for » > 1, g,2 goes to infinity as g2
tends to zero and, as Z-! = 1, the latter curve g,%(g?) must necessarily have
a minimum at some finite g,2 > 0.

For » = 1, g,2 goes to the constant A’ as g2 tends to zero. In the case of the
iterated bubble approximation of quantum electrodynamics and meson theory
as well as in the Lee Model, one finds that » = 1, and calculation shows that
g,2 increases with increasing g2, and g,2 — A4’ as g2 — +0in an asymptotic way,
that is, d" g,2/dg® — O for g2 — 4-0 and = = 1. If with increasing g2, g, would
start to decrease, the curve gy?(g?) would have to pass through a minimum at
some g,2 < A’, as can be seen from Z-1 = 1.

The behaviour of g,%(g?) for large g% was already studied in (I).

5. Conclusions

(a) The physical implications of a field theory with singular structure at
zero coupling were discussed in detailin (I). In particular, the relation between
bare and dressed particles was shown to differ from the usually accepted one.

(b) The possibility of obtaining finite relations between g and g, supports the
hope that the theory might lead to definite numerical values such as observed
charge or mass-charge ratios if supplemented with some additional conditions.

(c) If one assumes that in quantum-electrodynamics the exact propagator
has a ghost pole and coincides asymptotically with an axiomatic one, then one
of the results of Gell-Mann and Low’s analysis, namely the fact that g, can be a
finite non-zero constant independent of g could be weakened to imply that g,
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tends asymptotically to a constant as g tends to zero, corresponding to the
case r = 1. Since this is also the case for the iterated bubble approximation,
one would conclude that this approximation suffices to describe the essential
qualitative features of the exact propagator for small g, even in the high
energy region.

(d) From (10) one can draw the following conclusion: if perturbation theory
leads to results of the type (13) and not of the general type (12), the integral
[Rdu?(u*—m?)K (g%, »®) must be infinite. Since this integral is connected with
boson mass renormalization one concludes that the boson self-mass in the
modified theory will diverge. This conclusion, however, is not necessarily valid
for the fermion self-mass since in that case the lower degree of divergency in
perturbation theory will reflect itself also in the modified ghost-subtracted,
and therefore axiomatic theory.
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